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Abstract— We consider the problem of observer design for
systems with periodic disturbances in the system outputs.
Assuming that the period T of the disturbance is known, we
introduce the idea of mixing past and present output data
to remove the disturbance, by defining a new output as the
difference between the original output at time t and at time
t�T . We determine the exact conditions under which the system
is observable from the redefined output, and specify how to
design an observer using regular pole-placement techniques and
linear time-invariant analysis. We validate the design through
simulations.

I. INTRODUCTION

A common problem in observer design is the presence

of disturbances in the system outputs. A typical observer

works by replicating the dynamics of a physical system and

using an output injection term to stabilize the estimates and

to achieve the required convergence properties. When the

outputs from the physical system are corrupted by distur-

bances, the output injection term introduces disturbances in

the observer dynamics, which can lead to severe performance

degradation.

In many cases, output disturbances have a non-white

correlation profile, meaning that the current value of the dis-

turbance and past values of the disturbance have a common

component, at least in a statistical sense. In this paper we

introduce the idea of mixing past and present output data in

order to remove or reduce such common components. The

logic behind this mixing can be explained as follows: sup-

pose an output signal y.t/ contains an additive disturbance

signal d.t/ that has a significant positive correlation with

the delayed disturbance signal d.t �T /. Suppose furthermore

that we define a new output as Ny.t/ D y.t/�y.t �T /; that is,

by subtracting past output data from the present output data.

The disturbance term in Ny.t/ is then Nd.t/ D d.t/�d.t �T /.

Logically, one should expect the intensity of the signal Nd.t/

to be significantly lower than that of d.t/, because a common

component in d.t/ and d.t � T / has been canceled. If we

can design an observer based on the newly defined output

Ny.t/, chances are therefore good that it will be less affected

by the disturbance than an observer based on the original

output. A crucial condition is of course that the system must

be observable from Ny.t/.
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We shall consider the particular case of a linear time-

invariant (LTI) system with outputs corrupted by periodic

disturbances with known period T . Periodic disturbances can

be completely canceled by redefining the output as described

above. We shall investigate the exact conditions under which

observability is retained from the redefined output, and show

that an observer can be designed using standard techniques,

by treating the system with the redefined output as another

LTI system.

A. Deliberate Time Delays in Control and Estimation

The mixing approach discussed above involves the in-

troduction of deliberate time delays in the observer. The

potential power of deliberate time delays in control and

estimation has been demonstrated in several ways. One

example is the use of time delays for approximation of

derivatives (e.g., [1]–[3]). Another is for stabilization of

unknown periodic orbits and set points [4]–[7]. For periodic

references or disturbances to system equations, time delays

have been used to improve performance through repetitive

control (see, e.g., [8]). In repetitive control, an internal model

of an arbitrary periodic signal is created by using a time

delay, and this model is gradually developed to help cancel

periodic disturbances or improve tracking. Common to the

approaches in [1]–[8] is that they result in retarded or neutral

time-lag systems that are difficult to analyze with respect to

stability and performance.

Of more direct relevance to the results in this paper is the

use of time delays to create continuous-time observers with

finite convergence time. The underlying idea, as described

in simple terms in [9], is that for LTI systems, past output

data can be related to the current state by an algebraic

relationship. By using past and present observer estimates

from two separate observers, [9] shows that enough equations

are obtained to uniquely identify the state of the system.

An earlier example of continuous-time observers with finite

convergence time is found in [10], where the main idea is to

use multiple delayed outputs to form a set of equations that

is uniquely solvable with respect to the current state.

II. PROBLEM FORMULATION

Consider the system

Px.t/ D Ax.t/ C Bu.t/; x 2 R
n; u 2 R

m; (1a)

y.t/ D Cx.t/ C Du.t/ C d.t/; y; d 2 R
p; (1b)

where u.t/ is a known, piecewise continuous input that is

bounded on any finite interval, and d.t/ is an unknown

disturbance term in the measurement signal that is bounded,



piecewise continuous, and periodic with period T . We as-

sume that the system is initialized at time t D 0. In the

absence of the disturbance d.t/, a standard observer (see,

e.g., [11]) consists of a copy of the original system, plus an

output injection term:

POx.t/ D A Ox.t/ C Bu.t/ C L.y.t/ � C Ox.t/ � Du.t//: (2)

By defining the error Qx.t/ D x.t/ � Ox.t/, one obtains the

error dynamics

PQx.t/ D .A � LC / Qx.t/:

If the gain L is chosen such that the matrix .A � LC /

is Hurwitz, exponential stability of the error dynamics is

ensured. Such a gain is guaranteed to exist (and can be easily

found) if the pair .C; A/ is observable, a property that can

be confirmed by checking whether the observability matrix
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is of full rank n.

In the presence of a disturbance d.t/, the standard ap-

proach would yield the error dynamics

PQx.t/ D .A � LC / Qx.t/ � Ld.t/: (3)

Hence, unless L is chosen as zero, which is possible only if

A is Hurwitz, the disturbance influences the observer error

and prevents convergence to the origin.

A. Existing Methods for Disturbance Rejection

Much literature on estimation is devoted to dealing with

unknown disturbances to the system’s dynamic equations.

Among the available techniques are the use of unknown-

input observers, which are capable of perfectly canceling

disturbances under restrictive conditions (see, e.g., [12]–

[14], [15, Ch. 7]), and high-gain observers that can in some

cases suppress the effect of a disturbance by increasing the

observer gain (see, e.g., [16], [15, Ch. 8, 9]). Neither of these

approaches are applicable when the disturbance occurs in the

output signal.

One possibility is to extend the system with a model of the

disturbance, and to estimate the states of this model along

with the original states. When the disturbance is periodic

and composed of a finite number of sinusoids with known

frequencies, it can be modeled as the output of a marginally

stable, linear exosystem. In this case an observer can be

designed for the extended LTI system, just as for any other

LTI system, provided it is observable (see, e.g., [15, Ch. 12,

13]). In the case of a general periodic disturbance with a

known period, a time delay can be used to create an internal

model of the disturbance, as mentioned in Section I. One

possible approach is therefore to design an observer by the

normal procedure in Section II, and to use a repetitive control

approach to estimate the disturbance and to cancel its effect.

As mentioned in Section I, however, repetitive control results

in retarded or neutral time-lag systems that, owing to their

infinite-dimensional nature, can be difficult to stabilize and

analyze.

III. MIXING DESIGN

To create an observer that is not influenced by the periodic

disturbance, we redefine the output of the system as Ny.t/ D

y.t/ � y.t � T /. Since the disturbance has the property

d.t/ D d.t � T /, the new output Ny.t/ is not influenced

by the disturbance.

Because Ny.t/ is defined by using a time delay, the system

(1a) with output Ny.t/ is infinite-dimensional. Although anal-

ysis of infinite-dimensional systems is often complicated, we

shall demonstrate that in the present case, we can simplify

matters by analyzing the dynamics of a finite-dimensional

LTI system whose behavior coincides with the system in

question. The trick is to relate the delayed signal y.t �T / to

the current state x.t/, rather than to the past state x.t � T /.

Solving the linear differential equation (1), we have the

following relationship for all t � T (see, e.g., [11]):

x.t � T / D e�AT x.t/ C

Z t�T

t

eA.t�T ��/Bu.�/ d�: (4)

Define u�.t/ D C
R t�T

t
eA.t�T ��/Bu.�/ d� C Du.t � T /.

Then for all t � T , y.t � T / D C e�AT x.t/ C u�.t/ C d.t �

T /. Hence, for all t � T , the system (1) with the new output

corresponds precisely to the LTI system

Px.t/ D Ax.t/ C Bu.t/; (5a)

Ny.t/ D C.I � e�AT /x.t/ C Du.t/ � u�.t/: (5b)

We emphasize that the LTI description (5) is valid for all

t � T , irrespective of the input u.t/. The signal u�.t/

appearing in (5) can be computed for use in observer design,

as described in Section III-B.

From (5) it is clear that if the pair .C.I � e�AT /; A/ is

observable, then we can design an observer for (5), which is

also an observer for (1). The next theorem states the precise

conditions for observability of the pair .C.I � e�AT /; A/ in

terms of the properties of the original system (1).

Theorem 1: The pair .C.I � e�AT /; A/ is observable if,

and only if, the pair .C; A/ is observable and A has no purely

imaginary eigenvalues located at ˙2�k=Tj , k D 0; 1; 2; : : :

Proof: To check observability, we look at the observ-

ability matrix for the pair .C.I � e�AT /; A/:
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1
X

kD0

.�T /k

kŠ
Ak D �

1
X

kD1

.�T /k

kŠ
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it is obvious that .I � e�AT / commutes with A. Hence, we

can equivalently write
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.I � e�AT /: (6)

From (6), we see that rank.O/ D n if, and only if, both

the np � n matrix ŒC T; .CA/T; : : : ; .CAn�1/T�T and the

n � n matrix .I � e�AT / are of full rank n. The matrix

ŒC T; .CA/T; : : : ; .CAn�1/T�T is the observability matrix of

the pair .C; A/. Hence, a necessary and sufficient condition

for rank.O/ D n is that .C; A/ is observable and .I �e�AT /

is nonsingular.

To complete the proof, we show that nonsingularity of

.I � e�AT / is equivalent to A having no eigenvalues at

˙2�k=Tj , k D 0; 1; 2; : : : Let A D PJP �1, where J is

the Jordan normal form of A. Then e�AT D P e�JT P �1.

Singularity of .I � e�AT / is then equivalent to the existence

of a nonzero vector ´ such that .I � P e�JT P �1/´ D 0.

This is equivalent to .I � e�JT /P �1´ D 0, which in turn is

equivalent to .I � e�JT / being singular. We have

e�JT D

2

6

4

e�J1T � � � 0
:::

: : :
:::

0 � � � e�JqT

3

7

5
;

where J1; : : : ; Jq are the Jordan blocks of of J , correspond-

ing to the eigenvalues �1; : : : ; �q of A, repeated according

to their geometric multiplicities. Each block e�Ji T , i D

1; : : : ; q, has the form
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0 e��i T � � � .�T /ri �3e��i T

.ri �3/Š
.�T /ri �2e��i T

.ri �2/Š

:::
:::

: : :
:::

:::

0 0 � � � e��i T .�T /e��i T

1Š

0 0 � � � 0 e��i T
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;

where ri is the size of the Jordan block Ji . It follows that

.I �e�JT / is singular if, and only if, there exists i 2 1; : : : ; q,

such that e��i T D 1, causing one or more columns of

I � e�JT to vanish. This is equivalent to ��i T D ˙2�kj ,

which is equivalent to �i D ˙2�k=Tj . Hence, .I � e�AT /

is nonsingular if, and only if, A has no eigenvalues at

˙2�k=Tj , k D 0; 1; 2; : : :

Remark 1: It can easily be seen that the condition in

Theorem 1 is least restrictive if T is the fundamental period

of the disturbance d.t/.

Remark 2: In the particular case when d.t/ is constant,

a value T > 0 that cancels d.t/ in Ny.t/ and that satisfies

the condition in Theorem 1 can be found if, and only if,

.C; A/ is observable and A has no eigenvalues at the origin.

To see this, observe that a constant signal is periodic with all

periods T > 0, and if A has one or more pairs of non-zero

eigenvalues on the imaginary axis, T > 0 can always be

chosen so that none of these pairs coincide with an integer

multiple of ˙2�=Tj .

A. Observer

Having established necessary and sufficient conditions for

observability, we are now ready to proceed with the observer

design. Because the system is precisely described by (5)

for all t � T , the observer design can be carried out by

the normal procedure outlined in Section II. Some care is

required, however, because of the use of time delays in the

observer.

We assume that the observer is initialized at time t D t0 �

0. To implement the observer, we need the signal y.t � T /.

This requires the implementation of a time delay, which must

be initialized with an initial function on the time interval

Œt0 � T; t0/. To separate between the actual delayed signal

y.t � T / and the output of the implemented time delay, we

use the notation yd.t � T / for the latter. We assume that

the time delay is initialized with a bounded initial function.

Hence, yd.t � T / is bounded for all t 2 Œt0; t0 C T /, and

for all t � t0 C T , yd.t � T / D y.t � T /. We shall also

need the signal u�.t/. As will be evident in Section III-B,

the computation of u�.t/ also depends on signals delayed by

T . Similar to yd.t/, we therefore introduce u�

d .t/, with the

property that u�

d .t/ is bounded for all t 2 Œt0; t0 C T /, and

for all t � t0 C T , u�

d .t/ D u�.t/.

Following the observer design procedure outlined in Sec-

tion II with respect to the LTI system (5), we obtain the

following observer:

POx.t/ D A Ox.t/ C Bu.t/ C L
�

y.t/ � yd.t � T /

� C.I � e�AT / Ox.t/ � Du.t/ C u�

d .t/
�

: (7)

Define the disturbance estimate Od.t/ D y.t/�C Ox.t/�Du.t/

and the associated error Qd.t/ D d.t/ � Od.t/. We can now

state the following theorem:

Theorem 2: Suppose that the conditions of Theorem 1

hold, and let L be chosen such that the matrix .A � LC.I �

e�AT // is Hurwitz. Then Qx.t/ and Qd.t/ are bounded for

all t 2 Œt0; t0 C T �, and there exist constants K > 0

and � > 0 such that for all t � t0 C T , k Qx.t/k �

Kk Qx.t0 C T /ke��.t�t0�T / and k Qd.t/k � KkC kk Qx.t0 C

T /ke��.t�t0�T /.

Proof: From Theorem 1, the pair .C.I � e�AT /; A/

is observable. Hence, we can choose L such that .A �

LC.I � e�AT // is Hurwitz, using standard pole-placement

techniques. We first consider the behavior of the observer

error for t � t0 C T . We then have y.t/ � yd.t � T / D Ny.t/,

and u�

d .t/ D u�.t/. By using (5b), which is valid for all

t � t0 C T , we can rewrite the observer equation (7) as

POx.t/ D A Ox.t/ C Bu.t/ C LC.I � e�AT /.x.t/ � Ox.t//:

By subtracting this expression from (5a), we obtain the error

dynamics PQx.t/ D .A � LC.I � e�AT // Qx.t/, which is expo-

nentially stable. Hence, there exist K > 0 and � > 0 such

that for all t � t0 C T , k Qx.t/k � Kk Qx.t0 C T /ke��.t�t0�T /.

Since Od.t/ D y.t/ � C Ox.t/ � Du.t/ D d.t/ C C Qx.t/, we

have Qd.t/ D �C Qx.t/, and hence k Qd.t/k � KkC kk Qx.t0 C

T /ke��.t�t0�T /.



It still remains to show that Qx.t/ and Qd.t/ are bounded

for all t 2 Œt0; t0 C T �. Define v.t/ D Bu.t/ C L.y.t/ �

yd.t � T / � Du.t/ C u�

d .t//. Then for all t 2 Œt0; t0 C T �, we

have POx.t/ D .A � LC.I � e�AT // Ox.t/ C v.t/, where v.t/ is

bounded. This represents an expontially stable LTI system

with a bounded disturbance, which generates a bounded

response. Hence Ox.t/ is bounded on Œt0; t0CT �, and it follows

that Qx.t/ and Qd.t/ are bounded on the same interval.

B. Obtaining u�

d .t/

To implement the observer (7), we need to have access

to the signal u�

d .t/ described in the previous section. This

signal should have the property that for all t 2 Œt0; t0 C T /,

u�

d .t/ is bounded, and for all t � t0 C T , u�

d .t/ D u�.t/ D

C
R t�T

t
eA.t�T ��/Bu.�/ d� C Du.t � T /. We may calculate

u�

d .t/ as follows:

Ṕ.t/ D A´.t/ C Bu.t/;

u�

d .t/ D C.´d.t � T / � e�AT ´.t// C Dud.t � T /:

The internal state ´.t/ is initialized at time t0. The quantities

´d.t�T / and ud.t�T / are delayed versions of ´.t/ and u.t/,

respectively, initialized with bounded initial functions on

Œt0�T; t0/, similar to yd.t�T /. To see why the computation is

valid, we note that, from (4), the following expression holds

for all t � t0 C T :

´.t � T / D e�AT ´.t/ C

Z t�T

t

eA.t�T ��/Bu.�/ d�: (8)

Hence, for all t � t0 CT , u�.t/ D C.´.t �T /�e�AT ´.t//C

Du.t �T /, and it follows that u�

d .t/ D u�.t/. This holds for

any A, irrespective of the initial condition ´.t0/, even when

A has positive eigenvalues (meaning that (1) is an unstable

system).

Clearly, if A does have positive eigenvalues, the internal

state ´.t/ becomes unstable. Technically this is fine, because

the system still has well-defined solutions for all t � t0.

In reality, however, internal instability leads to numerical

problems as ´.t/ becomes large. To deal with this, the

internal state ´.t/ may be reset with regular intervals. Of

course, (8) becomes invalid for one period after any reset. To

ensure continuous access to u�

d .t/, it is therefore necessary

to create two sets of internal states, given by the same

expression as ´.t/. The resets of these two systems can be

staggered in time such that (8) is always valid for one of

them.

IV. DISCUSSION

The mixing design presented in the previous sections

is based on redefining the output map of the system (1)

to obtain a new system representation (5). Because (5)

represents an LTI system, the possibilities for observer design

are not restricted to the particular observer (7); the system

is amenable to the full range of observer design techniques

for LTI systems and associated performance measures and

methods of analysis. This includes, for example, the Kalman

filter (see, e.g., [17]).

It is natural to ask whether redefining the output map

results in unreasonably strict observability conditions in

Theorem 1. To provide a partial answer to this question,

we consider the special case when the disturbance d.t/

is a constant. In this case, an alternative way of solving

the problem is to extend the system state to include the

disturbance (which has derivative zero), and to design an

observer for this system. The extended system becomes
�

Px.t/
Pd.t/

�

D

�

A 0

0 0

� �

x.t/

d.t/

�

C

�

B

0

�

u.t/;

y.t/ D
�

C I
�

�

x.t/

d.t/

�

C Du.t/:

The observability matrix for this system is
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:

Using the Cayley-Hamilton theorem, it is easily seen that O

has full rank if, and only if,
�

.CA/T � � � .CAn/T
�T

has

full rank, which happens if, and only if, the pair .C; A/ is

observable and A is nonsingular. This condition is equivalent

to the condition that .C; A/ is observable and that A has

no eigenvalues at the origin, which is precisely the same

condition as in Theorem 1 (see Remark 2).

If the disturbance d.t/ is known, it is clearly trivial to

design an observer for (1). A possible alternative solution

is therefore to design the observer using the output y.t/ by

the standard procedure in Section II, resulting in the error

dynamics (3), and to subsequently identify d.t/ based on

the available error signal Qy.t/ D y.t/ � C Ox.t/ � Du.t/ D

C Qx.t/ C d.t/. If a stable left inverse exists for the system

(3) with d.t/ considered the input and Qy.t/ considered the

output, then d.t/ can be identified from Qy.t/. To have a

stable left inverse, however, the system must be minimum-

phase, and it turns out that this is the case only if the system

matrix A is Hurwitz. To demonstrate this, we identify the

zero dynamics of the system: setting Qy.t/ D 0 and solving

for d.t/ yields d.t/ D �C Qx.t/. Inserting this into the error

dynamics (3) yields PQx.t/ D .A � LC / Qx.t/ C LC Qx.t/ D

A Qx.t/. The zero dynamics is therefore asymptotically stable

only if A is Hurwitz.

The case when A is Hurwitz can be trivially solved by

designing an observer with L D 0. Hence, the periodic

output disturbance is primarily a problem when A is not

Hurwitz, in which case the approach of the last paragraph

cannot be used.

V. SIMULATION

To validate the mixing approach, we consider a marginally

stable example system

Px.t/ D

�

0 1

�1 0

�

x.t/ C

�

1

0

�

u.t/

y.t/ D
�

1 0
�

x.t/ C d.t/
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Fig. 1. Simulation results with periodic output disturbance

with u.t/ D 2C3 sin.0:3t/ and d.t/ a signal with period T D

4:5 s. Figure 1(a) shows the disturbance-corrupted signal y.t/

together with Cx.t/. To check observability according to

Theorem 1, we first note that the observability matrix of

the pair .C; A/ is the identity matrix; hence .C; A/ is an

observable pair. Second, we note that the eigenvalues of A

are located at ˙j , which does not coincide with any integer

multiple of ˙2�=Tj . Hence, the system is observable from

the output Ny.t/ D y.t/�y.t �T /, and we can implement the

observer according to (7). We place the poles of .A�LC.I �

e�AT // at �1 and �2, which yields L �
�

1:90 �0:71
�T

.

The result of the simulation is shown in Figure 1(b), where

the actual states are compared to the state estimates.

To investigate robustness to nonperiodic measurement

noise, we add band-limited white noise to the output signal

y.t/, as shown in Figure 2(a). The result of the simulation is

shown in Figure 2(b). Finally, we investigate what happens

if there is uncertainty in the period of the disturbance, in

addition to measurement noise. We simulate the system with

T D 4 s used in the observer implementation, which changes

the observer gain to L �
�

1:73 �0:19
�T

when the poles

are placed as before. Figure 2(c) shows the states and the

state estimates in this case. The result of using an incorrect

period is to introduce a disturbance in the observer error

dynamics. It is worth noting, however, that the observer

cannot be destabilized by using an incorrect T . Further

simulations confirm that the approach works with unstable

system matrices as well.
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(a) The signal Cx.t/ (dashed) and the output y.t/ (solid) corrupted
by a periodic signal and band-limited white noise
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(b) States (dashed) and state estimates (solid) with band-limited white
measurement noise
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(c) States (dashed) and state estimates (solid) with uncertain period
and band-limited white measurement noise

Fig. 2. Simulation results with uncertain period and band-limited white
measurement noise

VI. CONCLUDING REMARKS

We have presented a method for observer design in the

presence of periodic disturbances in the system outputs, by

redefining the output map to cancel the disturbance. As seen

from (7), the observer depends on the system matrices A,

B , C , and D, and thus the performance of the observer

depends on the accuracy of the system model. This is not

fundamentally different from standard observer designs, such

as (2), which are also model-dependent. Nevertheless, the

model-dependent computation of u�

d .t/ and the redefinition

of the output map may increase sensitivity to modeling

errors, in particular when the period T is large.

The simulation results shown in Figure 2(c) indicate that

the design can produce acceptable results when the period

T is uncertain; however, this is in large part due to the low



gain used in the observer. When a higher gain is needed, for

example, when dealing with unstable systems, the sensitivity

to uncertainty in the period appears to be significant. Future

research will focus on adaptation of the time delays used in

the observer, in order to account for uncertainty or variation

in the period.
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